Skip to main content

Nanoscribe develops 3D printer capable of high-resolution 3D microfabrication

With the successor model Photonic Professional GT2, Nanoscribe, the world's leading manufacturer of 3D printers for microfabrication, offers new solutions for additive manufacturing and maskless lithography. Thanks to optimized hardware and software components as well as IP-Q printing material especially developed for larger volumes, high-resolution microstructures up to a height of 8 mm can now be produced for the first time. While Nanoscribe devices have always been optimally suited to the additive production of the finest structures, objects with submicrometer details from typically 160 nanometers up to the millimeter range on a printing area of up to 100x100 mm² can now be produced in a very short time.

Depending on the desired size and resolution, users can choose from sets of objectives, substrates, materials, and automated processes tailored to their applications. The user-friendly 3D printing workflow enables the fabrication of individual elements with maximum shape accuracy and surface smoothness, meeting the requirements for microlenses in the smartphone industry or filigree scaffold structures in cell biology. Likewise, high-precision masters can be produced for molding processes in series production on a scale and design freedom that can neither be achieved with alternative subtractive nor additive manufacturing technologies.
"The extension of the maximum print volumes toward the macroscale was a great wish of our customers and project partners from industry," says Nanoscribe CEO Martin Hermatschweiler. "With this relaunch of our extremely successful generation of Photonic Professional devices, we have now succeeded in overcoming previous physical limitations and increasing the performance of the devices by a factor of up to 10 in terms of productivity and speed," adds Hermatschweiler.

Extended Range of Applications for Industry

The new Photonic Professional GT2 3D printer can significantly shorten product development cycles, especially in cases where large-volume structures in the millimeter range are required, such as for microfluidic elements (filters or nozzles), lab-on-a-chip applications, or micro rapid prototyping. In the field of sensor and actuator technology, various product components can now be printed quickly and precisely on MEMS components or silicon chips without further adjustment or assembly processes thanks to the variety of printable substrates.

Photonic Professional GT2 systems will also open up completely new possibilities in the field of medical technology, such as the direct printing of micro-optics on glass fibers for minimally invasive endoscopes or the manufacture of microneedles for painless drug delivery through the skin.

Functional Principle of Two-Photon Polymerization in 3D Printing

Nanoscribe systems combine the technology of two-photon polymerization with the workflow of a conventional 3D printing process. An ultra-precisely focused femtosecond laser cures a photosensitive material layer-by-layer. In a simple workflow, software especially developed for the printing process supports the import of CAD models with extensive configuration options, including a wide selection of preset parameters. A 3D preview as well as a real-time camera support the user in optimal adjustment and monitoring of the printing process.
The proprietary software programs DeScribe and NanoWrite have been enhanced for the new printer generation. With intelligent printing strategies, up to 10 times higher printing speeds are achieved. Thanks to enormous design freedom, Nanoscribe printers can produce structures of varying complexity: for example, grating-like high resolution photonic structures in 2D, hemispherical microlenses with vertical slopes in 2.5D, and complex 3D objects such as gas-dynamic micronozzles. Parts printed with replicable topographies can also serve as polymer masters for molding processes. Using galvanic processes, 3D printed polymer masters are metallized in order to be used as nickel shims for mass production, for example, in injection molding.
Among 3D printing technologies, two-photon polymerization is best qualified for finest structures on the micro- and mesoscale. While other 3D printing technologies, such as Polyjet, DLP (Digital Light Processing), or SLA (stereolithography), only excel from the centimeter range, the strengths of Photonic Professional GT2 systems lie in the ultra-precise 3D microfabrication.

Read more about:

Laser systems

Editor's picks

Media Partners