Potentials of precision laser processing of fiber reinforced polymer components

Dipl.-Ing. V. Franke, M. Sc. Jana Gebauer
Fraunhofer Institut für Werkstoff- und Strahltechnik IWS
AGENDA

1. Motivation
2. State of the art
3. Surface pre-treatment by pulsed laser
 ➢ Additional rib application on a organic sheet
 ➢ Coating by thermal spraying
4. Volume ablation
 ➢ Integration of sensor elements or inserts
5. Conclusion
1. Motivation

“The right material on the right place”

- Fiber reinforced plastics (FRP): high strength + low weight
- FRP will replace metal in more sections constantly
- Weight reduction and resource efficiency
- But: properties of the metal still required, locally
- In consequence: mixed material design, hybrid joining, metal coating on FRP
- High Reliability needs high adhesive strength of combined material
Direct writing precision machining with (ultra-)short pulsed lasers

- Minimized thermal influence on the components
- Burr-free, high-precision machining down to a few micrometers (lateral)
- Typical applications in the field of surface processing and low material thicknesses (especially cutting)
- Due to extremely high intensities practically no restriction regarding the material
Surface pre-treatment roughens and enlarges joining surface

Established surface processes on FRP: mechanical blasting, sanding, flame treatment or chemical processes

Current challenges:
- Damage to surface-near fibers
- No defined material removal
- Masking necessary for local, selective treatment
Special aspects of fiber-reinforced plastics (FRP):

- Inhomogeneous, anisotropic material-mix with distinctly different thermal, optical and mechanical properties of reinforcing fiber (glass, carbon, basalt, ...) and matrix (thermoplastic, thermoset, with / without pigmentation)

 → Challenging for laser processing

- (Ultra) short pulse lasers enable precise machining:
 - Selective or homogeneous material removal
 - Reproducibility within a large process window
 - No / minimal influence on reinforcing fibers and matrix

- Selection of laser wavelength, pulse duration, laser power and beam shaping for adaptation to material and machining target
3. Surface pre-treatment by pulsed laser

Advantages of laser surface processing

- Damage-free exposing of surface-near fibers
- Selective matrix removal enables form fit
- Defined material removal
- High design flexibility
- No mechanical load
- Localized treatment
3. Surface pre-treatment by pulsed laser
Overmolding of FRP components
Additional reinforcing rib structure on organic sheets

- Task: Replace metal load through system by rib reinforced FRP
- Selective matrix removal along provided rib contact area on organic sheet
- Injection molding of matrix material at room temperature on areas with exposed fibers
Testing the adhesive strength of rib application

- Pull-off-test in rib shape
- 3 conditions: untreated, selective matrix removal with continuous wave and short-pulsed laser

Five times higher adhesive strength with surface pre-treatment by pulsed laser compared to untreated surface
LASYS 2018 – 05.- 07. June 2018
3. Surface pre-treatment by pulsed laser

also applicable for:
- Adhesive joining
- Direct joining of multimaterial combinations, e.g. FRP to metal
- Surface patterning of metal component
- Clamping of components
- Heating of metal

3. Surface pre-treatment by pulsed laser

Metal coating on FRP by thermal spraying

- Thermal spraying of multi layer system: porous adhesion promoting layer protects the FRP before a solid functional layer is sprayed on top
- Pre-treatment by mechanical blasting not suitable for coating FRP
 - Fibers get damaged and stick out of the surface
 - Broken fibers, blasting particles and matrix fragments on the surface lead to shadowing effects during coating process
 - High rejects and low reliability are the consequences

→ Laser surface processing as an alternative?
3. Surface pre-treatment by pulsed laser

- CFRP specimens in three conditions
 (a) sand blasting, (b) selective matrix removal
 and (c) grid like surface pattern

- Wire flame spraying of aluminum as an
 adhesion promoting layer

40% increased adhesive strength with
laser patterned surface in first feasibility
study
Promising potential for exploitation in multiple applications

- Base layer of hard coatings for wear protection, e.g. slide bearings
- Electrically conductive layers for heated functionalities or electromagnetic shielding, e.g. battery cases
- Metalized FRP surface enables soldering joints
- Base layer for additive manufacturing direct on FRP-components
Goals:

- Ablation, drilling and cutting of fiber composite materials with the highest precision
- Without thermal damage through the use of short and ultrashort pulse lasers and highly dynamic beam deflection technology

Scope of application:

- Lightweight design, mechanical engineering
- Vehicle construction, aviation, machine building

From the surface to the depth - volume removal and separation
Health monitoring in FRP

- Task: maximize life circle time of FRP component
- Integrate sensor elements into crash relevant FRP elements
- Analyzing data to decide if FRP part needs to get replaced or not
- Important for volume ablation on FRP components:
 - No thermal damage
 - No pull-out effect
 - Volume ablation minimized to design requirements
Laser Ablation vs. Milling

<table>
<thead>
<tr>
<th>Laser Ablation</th>
<th>Milling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td></td>
</tr>
<tr>
<td>- Final shape same as contour of sensor or insert</td>
<td></td>
</tr>
<tr>
<td>- Highest design flexibility</td>
<td></td>
</tr>
<tr>
<td>- No mechanical load</td>
<td></td>
</tr>
<tr>
<td>- No fiber pull out</td>
<td></td>
</tr>
<tr>
<td>- Wear-free</td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td></td>
</tr>
<tr>
<td>- Middle process time (60 s/cm³) (limited to current laser power)</td>
<td></td>
</tr>
<tr>
<td>- Special tool for FRP required</td>
<td></td>
</tr>
<tr>
<td>- Final shape depends on tool geometry</td>
<td></td>
</tr>
<tr>
<td>- Risk of fiber pull-out</td>
<td></td>
</tr>
<tr>
<td>- Carbon deposits increases wear</td>
<td></td>
</tr>
<tr>
<td>- Manual post-processing</td>
<td></td>
</tr>
</tbody>
</table>

Surface after treatment

![Surface after treatment image](image1)

![Surface after treatment image](image2)

![Surface after treatment image](image3)
Integration of sensor elements in FRP components

- Volume ablation with pulsed laser ($\lambda=532$ nm, $P=10$ W, $t_p=8$ ps)
- Volume removal optimized to shape of sensor
- Overmolding of sensor-enhanced FRP component with short fiber reinforced polymer
5. Conclusion

Pulsed laser processing as surface pre-treatment on FRP

- Selective matrix removal exposes surface-near fibers and offers form fit for joining processes
- Increased adhesive strengths can be achieved in adhesive joining and injection molding
- Surface patterning offers higher adhesive strengths of the thermal sprayed coating than mechanical blasting
- Volume ablation by pulsed laser on FRP shows better surface quality than milling
Eager for your questions...now or Visit us at booth 4C17 or At the Fraunhofer IWS in Dresden

Dipl.-Ing. Volker Franke
Fraunhofer IWS
Winterbergstraße 28
01277 Dresden, Germany

Phone +49 351 83391-3254
Fax +49 351 83391-3300
E-Mail volker.franke@iws.fraunhofer.de

www.iws.fraunhofer.de

M. Sc. Jana Gebauer

Phone +49 351 83391-3436
Fax +49 351 83391-3300
E-Mail jana.gebauer@iws.fraunhofer.de